The present paper is devoted to the implementation and validation of a second-order perturbative approach to anharmonic vibrations, followed by variational treatment of strong couplings (GVPT2) based on curvilinear internal coordinates. The main difference with respect to the customary Cartesian-based formulation is that the kinetic energy operator is no longer diagonal, and has to be expanded as well, leading to additional terms which have to be taken into proper account. It is, however, possible to recast all the equations as well-defined generalizations of the corresponding Cartesian-based counterparts, thus achieving a remarkable simplification of the new implementation. Particular attention is paid to the treatment of Fermi resonances with significant number of test cases analyzed fully, validating the new implementation. The results obtained in this work confirm that curvilinear coordinates strongly reduce the strength of inter-mode couplings compared to their Cartesian counterparts. This increases the reliability of low-order perturbative treatments for semi-rigid molecules and paves the way toward the reliable representation of more flexible molecules where small- and large-amplitude motions can be safely decoupled and treated at different levels of theory.

Perturb-Then-Diagonalize Vibrational Engine Exploiting Curvilinear Internal Coordinates

Mendolicchio M.
;
Bloino J.;Barone V.
2022

Abstract

The present paper is devoted to the implementation and validation of a second-order perturbative approach to anharmonic vibrations, followed by variational treatment of strong couplings (GVPT2) based on curvilinear internal coordinates. The main difference with respect to the customary Cartesian-based formulation is that the kinetic energy operator is no longer diagonal, and has to be expanded as well, leading to additional terms which have to be taken into proper account. It is, however, possible to recast all the equations as well-defined generalizations of the corresponding Cartesian-based counterparts, thus achieving a remarkable simplification of the new implementation. Particular attention is paid to the treatment of Fermi resonances with significant number of test cases analyzed fully, validating the new implementation. The results obtained in this work confirm that curvilinear coordinates strongly reduce the strength of inter-mode couplings compared to their Cartesian counterparts. This increases the reliability of low-order perturbative treatments for semi-rigid molecules and paves the way toward the reliable representation of more flexible molecules where small- and large-amplitude motions can be safely decoupled and treated at different levels of theory.
2022
Settore CHIM/02 - Chimica Fisica
   Fondi MUR
File in questo prodotto:
File Dimensione Formato  
acs.jctc.2c00773.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Published version
Licenza: Creative Commons
Dimensione 2.9 MB
Formato Adobe PDF
2.9 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/128965
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact