We construct positive solutions to the equation-Delta(Hn)u = u(Q+2/Q-2)on the Heisenberg group, singular in the origin, similar to the Fowler solutions of the Yamabe equations on R-n. These satisfy the homogeneity property u o delta(T) = T-(Q-2)/2 u for some T large enough, where Q = 2n + 2 and delta(T) is the natural dilation in H-n. We use the Lyapunov-Schmidt method applied to a family of approximate solutions built by periodization from the global regular solution classified by Jerison and Lee (1988).
Singular periodic solutions to a critical equation in the Heisenberg group
Afeltra, Claudio
2020
Abstract
We construct positive solutions to the equation-Delta(Hn)u = u(Q+2/Q-2)on the Heisenberg group, singular in the origin, similar to the Fowler solutions of the Yamabe equations on R-n. These satisfy the homogeneity property u o delta(T) = T-(Q-2)/2 u for some T large enough, where Q = 2n + 2 and delta(T) is the natural dilation in H-n. We use the Lyapunov-Schmidt method applied to a family of approximate solutions built by periodization from the global regular solution classified by Jerison and Lee (1988).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1908.02264v2.pdf
accesso aperto
Tipologia:
Accepted version (post-print)
Licenza:
Creative Commons
Dimensione
246.18 kB
Formato
Adobe PDF
|
246.18 kB | Adobe PDF | |
pjmAfeltra.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
362.33 kB
Formato
Adobe PDF
|
362.33 kB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.