We construct positive solutions to the equation-Delta(Hn)u = u(Q+2/Q-2)on the Heisenberg group, singular in the origin, similar to the Fowler solutions of the Yamabe equations on R-n. These satisfy the homogeneity property u o delta(T) = T-(Q-2)/2 u for some T large enough, where Q = 2n + 2 and delta(T) is the natural dilation in H-n. We use the Lyapunov-Schmidt method applied to a family of approximate solutions built by periodization from the global regular solution classified by Jerison and Lee (1988).

Singular periodic solutions to a critical equation in the Heisenberg group

Afeltra, Claudio
2020

Abstract

We construct positive solutions to the equation-Delta(Hn)u = u(Q+2/Q-2)on the Heisenberg group, singular in the origin, similar to the Fowler solutions of the Yamabe equations on R-n. These satisfy the homogeneity property u o delta(T) = T-(Q-2)/2 u for some T large enough, where Q = 2n + 2 and delta(T) is the natural dilation in H-n. We use the Lyapunov-Schmidt method applied to a family of approximate solutions built by periodization from the global regular solution classified by Jerison and Lee (1988).
2020
Settore MAT/05 - Analisi Matematica
subelliptic equations; perturbation methods; Mathematics - Analysis of PDEs; Mathematics - Analysis of PDEs
File in questo prodotto:
File Dimensione Formato  
1908.02264v2.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 246.18 kB
Formato Adobe PDF
246.18 kB Adobe PDF
pjmAfeltra.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 362.33 kB
Formato Adobe PDF
362.33 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/131182
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact