This paper introduces an innovative approach utilizing Google Colaboratory (Colab) for the versatile analysis of phasor Fluorescence Lifetime Imaging Microscopy (FLIM) data collected from various samples (e.g., cuvette, cells, tissues) and in various input file formats. In fact, phasor-FLIM widespread adoption has been hampered by complex instrumentation and data analysis requirements. We mean to make advanced FLIM analysis more accessible to researchers through a cloud-based solution that i) harnesses robust computational resources, ii) eliminates hardware limitations, iii) supports both CPU and GPU processing, We envision a paradigm shift in FLIM data accessibility and potential, aligning with the evolving field of AI-driven FLIM analysis. This approach simplifies FLIM data handling and opens doors for diverse applications, from studying cellular metabolism to investigating drug encapsulation, benefiting researchers across multiple domains. The comparative analysis of freely distributed FLIM tools highlights the unique advantages of this approach in terms of adaptability, scalability, and open-source nature.

Phasor identifier : a cloud-based analysis of Phasor-FLIM data on Python notebooks

Bernardi, Mario
Methodology
;
Cardarelli, Francesco
Funding Acquisition
2023

Abstract

This paper introduces an innovative approach utilizing Google Colaboratory (Colab) for the versatile analysis of phasor Fluorescence Lifetime Imaging Microscopy (FLIM) data collected from various samples (e.g., cuvette, cells, tissues) and in various input file formats. In fact, phasor-FLIM widespread adoption has been hampered by complex instrumentation and data analysis requirements. We mean to make advanced FLIM analysis more accessible to researchers through a cloud-based solution that i) harnesses robust computational resources, ii) eliminates hardware limitations, iii) supports both CPU and GPU processing, We envision a paradigm shift in FLIM data accessibility and potential, aligning with the evolving field of AI-driven FLIM analysis. This approach simplifies FLIM data handling and opens doors for diverse applications, from studying cellular metabolism to investigating drug encapsulation, benefiting researchers across multiple domains. The comparative analysis of freely distributed FLIM tools highlights the unique advantages of this approach in terms of adaptability, scalability, and open-source nature.
2023
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
   CAPTURING THE PHYSICS OF LIFE ON 3D-TRAFFICKING SUBCELLULAR NANOSYSTEMS
   CAPTUR3D
   European Commission
   Horizon 2020 Framework Programme
   866127

   Tuscany Health Ecosystem (THE, PNRR, Spoke 4: Nanotechnologies for diagnosis and therapy)
   European Union
File in questo prodotto:
File Dimensione Formato  
Phasor identifier a cloud-based analysis of Phasor-FLIM data on Python notebooks.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 3.54 MB
Formato Adobe PDF
3.54 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/135982
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact