For every n≥6, we give an example of a finite subset of P2 of degree n which does not descend to any Brauer–Severi surface over the field of moduli. Conversely, for every n≤5, we prove that a finite subset of degree n always descends to a 0-cycle on P2 over the field of moduli.

The field of moduli of sets of points in P2

Bresciani, Giulio
2024

Abstract

For every n≥6, we give an example of a finite subset of P2 of degree n which does not descend to any Brauer–Severi surface over the field of moduli. Conversely, for every n≤5, we prove that a finite subset of degree n always descends to a 0-cycle on P2 over the field of moduli.
2024
Settore MAT/03 - Geometria
Fields of moduli; Fields of definition; Projective plane
File in questo prodotto:
File Dimensione Formato  
Bresciani - The field of moduli of sets of points in P2.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 280.4 kB
Formato Adobe PDF
280.4 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/141963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact