For every n≥6, we give an example of a finite subset of P2 of degree n which does not descend to any Brauer–Severi surface over the field of moduli. Conversely, for every n≤5, we prove that a finite subset of degree n always descends to a 0-cycle on P2 over the field of moduli.
The field of moduli of sets of points in P2
Bresciani, Giulio
2024
Abstract
For every n≥6, we give an example of a finite subset of P2 of degree n which does not descend to any Brauer–Severi surface over the field of moduli. Conversely, for every n≤5, we prove that a finite subset of degree n always descends to a 0-cycle on P2 over the field of moduli.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Bresciani - The field of moduli of sets of points in P2.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
280.4 kB
Formato
Adobe PDF
|
280.4 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.