We show that, given a homeomorphism f: G → ω {f:G\rightarrow\Omega} where G is an open subset of 2 {\mathbb{R}{2}} and ω is an open subset of a 2-Ahlfors regular metric measure space supporting a weak (1, 1) {(1,1)} -Poincaré inequality, it holds f BV loc (G, ω) {f\in{\operatorname{BV{\mathrm{loc}}}}(G,\Omega)} if and only if f - 1 BV loc (ω, G) {f{-1}\in{\operatorname{BV{\mathrm{loc}}}}(\Omega,G)}. Further, if f satisfies the Luzin N and N - 1 {{}{-1}} conditions, then f W loc 1, 1 (G, ω) {f\in\operatorname{W{\mathrm{loc}}{1,1}}(G,\Omega)} if and only if f - 1 W loc 1, 1 (ω, G) {f{-1}\in\operatorname{W{\mathrm{loc}}{1,1}}(\Omega,G)}.

BV and Sobolev homeomorphisms between metric measure spaces and the plane

Brena, Camillo;
2023

Abstract

We show that, given a homeomorphism f: G → ω {f:G\rightarrow\Omega} where G is an open subset of 2 {\mathbb{R}{2}} and ω is an open subset of a 2-Ahlfors regular metric measure space supporting a weak (1, 1) {(1,1)} -Poincaré inequality, it holds f BV loc (G, ω) {f\in{\operatorname{BV{\mathrm{loc}}}}(G,\Omega)} if and only if f - 1 BV loc (ω, G) {f{-1}\in{\operatorname{BV{\mathrm{loc}}}}(\Omega,G)}. Further, if f satisfies the Luzin N and N - 1 {{}{-1}} conditions, then f W loc 1, 1 (G, ω) {f\in\operatorname{W{\mathrm{loc}}{1,1}}(G,\Omega)} if and only if f - 1 W loc 1, 1 (ω, G) {f{-1}\in\operatorname{W{\mathrm{loc}}{1,1}}(\Omega,G)}.
2023
Settore MAT/05 - Analisi Matematica
Settore MATH-03/A - Analisi matematica
homeomorphism of bounded variation; Jordan curve; mapping of bounded variation; Metric measure space
File in questo prodotto:
File Dimensione Formato  
PlanarHomeo v2.pdf

Open Access dal 01/08/2024

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 426.19 kB
Formato Adobe PDF
426.19 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/142027
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact