It depends. For a single molecule interacting with one mode of a biphoton probe, we show that the spectroscopic information has three contributions, only one of which is a genuine two-photon contribution. When all the scattered light can be measured, solely this contribution exists and can be fully extracted using unentangled measurements. Furthermore, this two-photon contribution can, in principle, be matched by an optimised but unentangled single-photon probe. When the matter system spontaneously emits into inaccessible modes, an advantage due to entanglement can not be ruled out. In practice, time-frequency entanglement does enhance spectroscopic performance of the oft-studied weakly-pumped spontaneous parametric down conversion (PDC) probes. For two-level systems and coupled dimers, more entangled PDC probes yield more spectroscopic information, even in the presence of emission into inaccessible modes. Moreover, simple, unentangled measurements can capture between 60% and 90% of the spectroscopic information. We thus establish that biphoton spectroscopy using source-engineered PDC probes and unentangled measurements can provide tangible quantum enhancement. Our work underscores the intricate role of entanglement in single-molecule spectroscopy using quantum light.

Does entanglement enhance single-molecule pulsed biphoton spectroscopy?

Albarelli, Francesco;
2024

Abstract

It depends. For a single molecule interacting with one mode of a biphoton probe, we show that the spectroscopic information has three contributions, only one of which is a genuine two-photon contribution. When all the scattered light can be measured, solely this contribution exists and can be fully extracted using unentangled measurements. Furthermore, this two-photon contribution can, in principle, be matched by an optimised but unentangled single-photon probe. When the matter system spontaneously emits into inaccessible modes, an advantage due to entanglement can not be ruled out. In practice, time-frequency entanglement does enhance spectroscopic performance of the oft-studied weakly-pumped spontaneous parametric down conversion (PDC) probes. For two-level systems and coupled dimers, more entangled PDC probes yield more spectroscopic information, even in the presence of emission into inaccessible modes. Moreover, simple, unentangled measurements can capture between 60% and 90% of the spectroscopic information. We thus establish that biphoton spectroscopy using source-engineered PDC probes and unentangled measurements can provide tangible quantum enhancement. Our work underscores the intricate role of entanglement in single-molecule spectroscopy using quantum light.
2024
Settore FIS/03 - Fisica della Materia
atomic; molecular and optical physics; quantum information; quantum metrology; quantum optics; quantum parameter estimation; spectroscopy;
   MID-INFRARED QUANTUM TECHNOLOGY FOR SENSING
   MIRAQLS
   European Commission
   Horizon Europe Framework Programme
   101070700
File in questo prodotto:
File Dimensione Formato  
Khan_2024_Quantum_Sci._Technol._9_035004.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 3.46 MB
Formato Adobe PDF
3.46 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/143683
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact