: Mice lacking the homeodomain transcription factor Engrailed-2 (En2(-/-) mice) are a well-characterized model for autism spectrum disorders (ASD). En2(-/-) mice present molecular, neuropathological and behavioral deficits related to ASD, including down-regulation of ASD-associated genes, cerebellar hypoplasia, interneuron loss, enhanced seizure susceptibility, decreased sociability and impaired cognition. Specifically, impaired spatial learning in the Morris water maze (MWM) is associated with reduced expression of neurofibromin and increased phosphorylation of extracellular-regulated kinase (ERK) in the hippocampus of En2(-/-) adult mice. In the attempt to better understand the molecular cascades underlying neurofibromin-dependent cognitive deficits in En2 mutant mice, we investigated the expression and phosphorylation of synapsin I (SynI; a major target of neurofibromin-dependent signaling) in the hippocampus of wild-type (WT) and En2(-/-) mice before and after MWM. Here we show that SynI mRNA and protein levels are down-regulated in the hippocampus of naïve and MWM-treated En2(-/-) mice, as compared to WT controls. This down-regulation is paralleled by reduced levels of SynI phosphorylation at Ser549 and Ser553 residues in the hilus of mutant mice, before and after MWM. These data indicate that in En2(-/-) hippocampus, neurofibromin-dependent pathways converging on SynI phosphorylation might underlie hippocampal-dependent learning deficits observed in En2(-/-) mice.

Reduced phosphorylation of synapsin I in the hippocampus of Engrailed-2 knockout mice, a model for autism spectrum disorders

Poli, Andrea
;
Berardi, Nicoletta;Bozzi, Yuri
2015

Abstract

: Mice lacking the homeodomain transcription factor Engrailed-2 (En2(-/-) mice) are a well-characterized model for autism spectrum disorders (ASD). En2(-/-) mice present molecular, neuropathological and behavioral deficits related to ASD, including down-regulation of ASD-associated genes, cerebellar hypoplasia, interneuron loss, enhanced seizure susceptibility, decreased sociability and impaired cognition. Specifically, impaired spatial learning in the Morris water maze (MWM) is associated with reduced expression of neurofibromin and increased phosphorylation of extracellular-regulated kinase (ERK) in the hippocampus of En2(-/-) adult mice. In the attempt to better understand the molecular cascades underlying neurofibromin-dependent cognitive deficits in En2 mutant mice, we investigated the expression and phosphorylation of synapsin I (SynI; a major target of neurofibromin-dependent signaling) in the hippocampus of wild-type (WT) and En2(-/-) mice before and after MWM. Here we show that SynI mRNA and protein levels are down-regulated in the hippocampus of naïve and MWM-treated En2(-/-) mice, as compared to WT controls. This down-regulation is paralleled by reduced levels of SynI phosphorylation at Ser549 and Ser553 residues in the hilus of mutant mice, before and after MWM. These data indicate that in En2(-/-) hippocampus, neurofibromin-dependent pathways converging on SynI phosphorylation might underlie hippocampal-dependent learning deficits observed in En2(-/-) mice.
2015
Settore BIO/09 - Fisiologia
ERK; autism; learning; mouse; neurotransmission; synapse
   MUR
   PRINT 2008
   200894SYW2_002

   MUR
   PRIN 2010–2011
   2010N8PBAA_002
File in questo prodotto:
File Dimensione Formato  
4_Provenzano_Neuroscience_2015.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 3.73 MB
Formato Adobe PDF
3.73 MB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/143925
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact