This research employs the voltammetry of immobilized microparticles (VIMP) methodology to analyze a collection of ceramic samples from the temple of Venus Fisica in the archaeological site of Pompeii. The primary objective is to discern their origins and manufacturing processes by the solid-state analysis of the electroactive properties of iron minerals, particularly hematite, extensively investigated for its electrochemical and catalytic characteristics. In our study, we propose a model to elucidate the electrochemical processes involved, building upon prior logistic and nucleation formulations. In this model, we consider the possibility of two superimposed pathways. This approach provides a nuanced understanding of composition changes and mineral crystallinity, factors that can induce significant variations in the voltammetric signal. Consequently, it becomes an effective means to discriminate between different provenances and manufacturing techniques of different potteries. The outcomes of this research contribute valuable insights into the intricate realm of ancient ceramic materials, casting light on their origins and production processes within the historical context of Pompeii.

Modeling solid‑state reaction processes : application for the archaeometric study of potteries from Venus Fisica Temple in Pompeii (Italy)

Di Turo, Francesca
;
2024

Abstract

This research employs the voltammetry of immobilized microparticles (VIMP) methodology to analyze a collection of ceramic samples from the temple of Venus Fisica in the archaeological site of Pompeii. The primary objective is to discern their origins and manufacturing processes by the solid-state analysis of the electroactive properties of iron minerals, particularly hematite, extensively investigated for its electrochemical and catalytic characteristics. In our study, we propose a model to elucidate the electrochemical processes involved, building upon prior logistic and nucleation formulations. In this model, we consider the possibility of two superimposed pathways. This approach provides a nuanced understanding of composition changes and mineral crystallinity, factors that can induce significant variations in the voltammetric signal. Consequently, it becomes an effective means to discriminate between different provenances and manufacturing techniques of different potteries. The outcomes of this research contribute valuable insights into the intricate realm of ancient ceramic materials, casting light on their origins and production processes within the historical context of Pompeii.
2024
Settore CHIM/12 - Chimica dell'Ambiente e dei Beni Culturali
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Ancient potteries; Venus Fisica Temple; Pompeii; Voltammetry of immobilized particles; Electrochemistry; Archaeometry
File in questo prodotto:
File Dimensione Formato  
Di Turo_JSSElectrochem_2024.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/144803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact