We develop a three-timescale framework for modelling climate change and introduce a space-heterogeneous one-dimensional energy balance model. This model, addressing temperature fluctuations from rising carbon dioxide levels and the super-greenhouse effect in tropical regions, fits within the setting of stochastic reaction-diffusion equations. Our results show how both mean and variance of temperature increase, without the system going through a bifurcation point. This study aims to advance the conceptual understanding of the extreme weather events frequency increase due to climate change.

A non-autonomous framework for climate change and extreme weather events increase in a stochastic energy balance model

Del Sarto, Gianmarco;Flandoli, Franco
2024

Abstract

We develop a three-timescale framework for modelling climate change and introduce a space-heterogeneous one-dimensional energy balance model. This model, addressing temperature fluctuations from rising carbon dioxide levels and the super-greenhouse effect in tropical regions, fits within the setting of stochastic reaction-diffusion equations. Our results show how both mean and variance of temperature increase, without the system going through a bifurcation point. This study aims to advance the conceptual understanding of the extreme weather events frequency increase due to climate change.
2024
Settore MAT/06 - Probabilita' e Statistica Matematica
   Noise in Fluids
   NoisyFluid
   European Commission
   101053472
File in questo prodotto:
File Dimensione Formato  
Non_autonomous_framework_DelSarto_Flandoli_24.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/146083
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact