We characterize the maximizers of a functional that involves the minimization of the Wasserstein distance between sets of equal volume. We prove that balls are the only maximizers by combining a symmetrization-by-reflection technique with the uniqueness of optimal transport plans. Further, in one dimension, we provide a sharp quantitative refinement of this maximality result.

Maximizers of nonlocal interactions of Wasserstein Type

Carazzato, Davide
;
2024

Abstract

We characterize the maximizers of a functional that involves the minimization of the Wasserstein distance between sets of equal volume. We prove that balls are the only maximizers by combining a symmetrization-by-reflection technique with the uniqueness of optimal transport plans. Further, in one dimension, we provide a sharp quantitative refinement of this maximality result.
2024
Settore MAT/05 - Analisi Matematica
Settore MATH-03/A - Analisi matematica
Max-min problem; Optimal transport; Symmetrization-by-reflection; Wasserstein distance;
File in questo prodotto:
File Dimensione Formato  
cocv230206.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/147023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact