We characterize the maximizers of a functional that involves the minimization of the Wasserstein distance between sets of equal volume. We prove that balls are the only maximizers by combining a symmetrization-by-reflection technique with the uniqueness of optimal transport plans. Further, in one dimension, we provide a sharp quantitative refinement of this maximality result.
Maximizers of nonlocal interactions of Wasserstein Type
Carazzato, Davide
;
2024
Abstract
We characterize the maximizers of a functional that involves the minimization of the Wasserstein distance between sets of equal volume. We prove that balls are the only maximizers by combining a symmetrization-by-reflection technique with the uniqueness of optimal transport plans. Further, in one dimension, we provide a sharp quantitative refinement of this maximality result.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
cocv230206.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.