We prove that if a linear group Γ ⊂ GL n(K) over a field K of characteristic zero is boundedly generated by semi-simple (diagonalizable) elements then it is virtually solvable. As a consequence, one obtains that infinite S-arithmetic subgroups of absolutely almost simple anisotropic algebraic groups over number fields are never boundedly generated. Our proof relies on Laurent’s theorem from Diophantine geometry and properties of generic elements.

Non-virtually abelian anisotropic linear groups are not boundedly generated

CORVAJA, PIETRO;ZANNIER, UMBERTO
2022

Abstract

We prove that if a linear group Γ ⊂ GL n(K) over a field K of characteristic zero is boundedly generated by semi-simple (diagonalizable) elements then it is virtually solvable. As a consequence, one obtains that infinite S-arithmetic subgroups of absolutely almost simple anisotropic algebraic groups over number fields are never boundedly generated. Our proof relies on Laurent’s theorem from Diophantine geometry and properties of generic elements.
2022
Settore MATH-02/B - Geometria
File in questo prodotto:
File Dimensione Formato  
Licenza ZannierPost-PRINT.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 297.02 kB
Formato Adobe PDF
297.02 kB Adobe PDF   Richiedi una copia
Inventiones_2021_Corvaja_Ren_rapinchuk_reprint.pdf

Open Access dal 02/01/2023

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 338.06 kB
Formato Adobe PDF
338.06 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/147763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact