We prove that if a linear group Γ ⊂ GL n(K) over a field K of characteristic zero is boundedly generated by semi-simple (diagonalizable) elements then it is virtually solvable. As a consequence, one obtains that infinite S-arithmetic subgroups of absolutely almost simple anisotropic algebraic groups over number fields are never boundedly generated. Our proof relies on Laurent’s theorem from Diophantine geometry and properties of generic elements.
Non-virtually abelian anisotropic linear groups are not boundedly generated
CORVAJA, PIETRO;ZANNIER, UMBERTO
2022
Abstract
We prove that if a linear group Γ ⊂ GL n(K) over a field K of characteristic zero is boundedly generated by semi-simple (diagonalizable) elements then it is virtually solvable. As a consequence, one obtains that infinite S-arithmetic subgroups of absolutely almost simple anisotropic algebraic groups over number fields are never boundedly generated. Our proof relies on Laurent’s theorem from Diophantine geometry and properties of generic elements.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Licenza ZannierPost-PRINT.pdf
Accesso chiuso
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
297.02 kB
Formato
Adobe PDF
|
297.02 kB | Adobe PDF | Richiedi una copia |
Inventiones_2021_Corvaja_Ren_rapinchuk_reprint.pdf
Open Access dal 02/01/2023
Tipologia:
Accepted version (post-print)
Licenza:
Solo Lettura
Dimensione
338.06 kB
Formato
Adobe PDF
|
338.06 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.