The growth of high-quality graphene on flat and rigid templates, such as metal thin films on insulating wafers, is regarded as a key enabler for technologies based on 2D materials. In this work, the growth of decoupled graphene is introduced via non-reducing low-pressure chemical vapor deposition (LPCVD) on crystalline Cu(111) films deposited on sapphire. The resulting film is atomically flat, with no detectable cracks or ripples, and lies atop of a thin Cu2O layer, as confirmed by microscopy, diffraction, and spectroscopy analyses. Post-growth treatment of the partially decoupled graphene enables full and uniform oxidation of the interface, greatly simplifying subsequent transfer processes, particularly dry-pick up — a task that proves challenging when dealing with graphene directly synthesized on metallic Cu(111). Electrical transport measurements reveal high carrier mobility at room temperature, exceeding 104 cm2 V−1 s−1 on SiO2/Si and 105 cm2 V−1 s−1 upon encapsulation in hexagonal boron nitride (hBN). The demonstrated growth approach yields exceptional material quality, in line with micro-mechanically exfoliated graphene flakes, and thus paves the way toward large-scale production of pristine graphene suitable for high-performance next-generation applications.

Decoupled High‐Mobility Graphene on Cu(111)/Sapphire via Chemical Vapor Deposition

Rossi, Antonio;Martini, Leonardo;Piccinini, Giulia;Beltram, Fabio;Coletti, Camilla
2024

Abstract

The growth of high-quality graphene on flat and rigid templates, such as metal thin films on insulating wafers, is regarded as a key enabler for technologies based on 2D materials. In this work, the growth of decoupled graphene is introduced via non-reducing low-pressure chemical vapor deposition (LPCVD) on crystalline Cu(111) films deposited on sapphire. The resulting film is atomically flat, with no detectable cracks or ripples, and lies atop of a thin Cu2O layer, as confirmed by microscopy, diffraction, and spectroscopy analyses. Post-growth treatment of the partially decoupled graphene enables full and uniform oxidation of the interface, greatly simplifying subsequent transfer processes, particularly dry-pick up — a task that proves challenging when dealing with graphene directly synthesized on metallic Cu(111). Electrical transport measurements reveal high carrier mobility at room temperature, exceeding 104 cm2 V−1 s−1 on SiO2/Si and 105 cm2 V−1 s−1 upon encapsulation in hexagonal boron nitride (hBN). The demonstrated growth approach yields exceptional material quality, in line with micro-mechanically exfoliated graphene flakes, and thus paves the way toward large-scale production of pristine graphene suitable for high-performance next-generation applications.
2024
Settore PHYS-03/A - Fisica sperimentale della materia e applicazioni
Cu2O; chemical vapor deposition; copper film; dry pick‐up; graphene; high‐mobility
   PNRR Partenariati Estesi - NQSTI - National Quantum Science and Technology Institute.
   NQSTI
   Ministero della pubblica istruzione, dell'università e della ricerca
   PE00000023

   Graphene Flagship Core Project 3
   GrapheneCore3
   European Commission
   Horizon 2020 Framework Programme
   881603

   GRAphene PHotonic frequency miXer
   GRAPH-X
   European Commission
   Horizon Europe Framework Programme
   101070482
File in questo prodotto:
File Dimensione Formato  
Advanced Materials - 2024 - Gebeyehu - Decoupled High‐Mobility Graphene on Cu 111 Sapphire via Chemical Vapor Deposition.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 5.8 MB
Formato Adobe PDF
5.8 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/149885
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact