We consider the problem of discriminating quantum states, where the task is to distinguish two different quantum states with a complete classical knowledge about them, and the problem of classifying quantum states, where the task is to distinguish two classes of quantum states where no prior classical information is available but a finite number of physical copies of each classes are given. In the case the quantum states are represented by coherent states of light, we identify intermediate scenarios where partial prior information is available. We evaluate an analytical expression for the minimum error when the quantum states are opposite and a prior on the amplitudes is known. Such a threshold is attained by complex POVM that involve highly non-linear optical procedure. A suboptimal procedure that can be implemented with current technology is presented that is based on a modification of the conventional Dolinar receiver. We study and compare the performance of the scheme under different assumptions on the prior information available.

Agnostic Dolinar receiver for coherent-state classification

Zoratti, Fabio
;
Dalla Pozza, Nicola;Fanizza, Marco;Giovannetti, Vittorio
2021

Abstract

We consider the problem of discriminating quantum states, where the task is to distinguish two different quantum states with a complete classical knowledge about them, and the problem of classifying quantum states, where the task is to distinguish two classes of quantum states where no prior classical information is available but a finite number of physical copies of each classes are given. In the case the quantum states are represented by coherent states of light, we identify intermediate scenarios where partial prior information is available. We evaluate an analytical expression for the minimum error when the quantum states are opposite and a prior on the amplitudes is known. Such a threshold is attained by complex POVM that involve highly non-linear optical procedure. A suboptimal procedure that can be implemented with current technology is presented that is based on a modification of the conventional Dolinar receiver. We study and compare the performance of the scheme under different assumptions on the prior information available.
2021
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore PHYS-02/A - Fisica teorica delle interazioni fondamentali, modelli, metodi matematici e applicazioni
   Taming complexity with quantum strategies: a hybrid integrated photonics approach. Cod. 2017SRNBRK_004
   Ministero della pubblica istruzione, dell'università e della ricerca
File in questo prodotto:
File Dimensione Formato  
2106.11909v1.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 833.46 kB
Formato Adobe PDF
833.46 kB Adobe PDF
Agnostic Dolinar.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/150703
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact