We consider a random dynamical system on Rd, whose dynamics is defined by a stochastic differential equation. The annealed transfer operator associated with such systems is a kernel operator. Given a set of feasible infinitesimal perturbations P to this kernel, with support in a certain compact set, and a specified observable function ϕ:Rd→R, we study which infinitesimal perturbation in P produces the greatest change in expectation of ϕ. We establish conditions under which the optimal perturbation uniquely exists and present a numerical method to approximate the optimal infinitesimal kernel perturbation. Finally, we numerically illustrate our findings with concrete examples.

Optimal response for stochastic differential equations by local kernel perturbations

Del Sarto, Gianmarco;
2025

Abstract

We consider a random dynamical system on Rd, whose dynamics is defined by a stochastic differential equation. The annealed transfer operator associated with such systems is a kernel operator. Given a set of feasible infinitesimal perturbations P to this kernel, with support in a certain compact set, and a specified observable function ϕ:Rd→R, we study which infinitesimal perturbation in P produces the greatest change in expectation of ϕ. We establish conditions under which the optimal perturbation uniquely exists and present a numerical method to approximate the optimal infinitesimal kernel perturbation. Finally, we numerically illustrate our findings with concrete examples.
2025
Settore MAT/06 - Probabilita' e Statistica Matematica
Settore MATH-03/B - Probabilità e statistica matematica
   Stochastic properties of dynamical systems
   Ministero della pubblica istruzione, dell'università e della ricerca
File in questo prodotto:
File Dimensione Formato  
073121_1_5.0265433.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/155183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact