Interferometric experiments designed to detect the highly redshifted 21-cm signal from neutral hydrogen are producing increasingly stringent constraints on the 21-cm power spectrum, but some k-modes remain systematics-dominated. Mutual coupling is a major systematic that must be overcome in order to detect the 21-cm signal, and simulations that reproduce effects seen in the data can guide strategies for mitigating mutual coupling. In this paper, we analyse 12 nights of data from the Hydrogen Epoch of Reionization Array and compare the data against simulations that include a computationally efficient and physically motivated semi-analytic treatment of mutual coupling. We find that simulated coupling features qualitatively agree with coupling features in the data; however, coupling features in the data are brighter than the simulated features, indicating the presence of additional coupling mechanisms not captured by our model. We explore the use of fringe-rate filters as mutual coupling mitigation tools and use our simulations to investigate the effects of mutual coupling on a simulated cosmological 21-cm power spectrum in a ‘worst case’ scenario where the foregrounds are particularly bright. We find that mutual coupling contaminates a large portion of the ‘EoR Window’, and the contamination is several orders-of-magnitude larger than our simulated cosmic signal across a wide range of cosmological Fourier modes. While our fiducial fringe-rate filtering strategy reduces mutual coupling by roughly a factor of 100 in power, a non-negligible amount of coupling cannot be excised with fringe-rate filters, so more sophisticated mitigation strategies are required.

Investigating mutual coupling in the hydrogen epoch of reionization array and mitigating its effects on the 21-cm power spectrum

Bernardi, G;Bull, P;Ghosh, A;Hewitt, J N;Liu, A;Mesinger, A;Murray, Steven G;Qin, Y;
2025

Abstract

Interferometric experiments designed to detect the highly redshifted 21-cm signal from neutral hydrogen are producing increasingly stringent constraints on the 21-cm power spectrum, but some k-modes remain systematics-dominated. Mutual coupling is a major systematic that must be overcome in order to detect the 21-cm signal, and simulations that reproduce effects seen in the data can guide strategies for mitigating mutual coupling. In this paper, we analyse 12 nights of data from the Hydrogen Epoch of Reionization Array and compare the data against simulations that include a computationally efficient and physically motivated semi-analytic treatment of mutual coupling. We find that simulated coupling features qualitatively agree with coupling features in the data; however, coupling features in the data are brighter than the simulated features, indicating the presence of additional coupling mechanisms not captured by our model. We explore the use of fringe-rate filters as mutual coupling mitigation tools and use our simulations to investigate the effects of mutual coupling on a simulated cosmological 21-cm power spectrum in a ‘worst case’ scenario where the foregrounds are particularly bright. We find that mutual coupling contaminates a large portion of the ‘EoR Window’, and the contamination is several orders-of-magnitude larger than our simulated cosmic signal across a wide range of cosmological Fourier modes. While our fiducial fringe-rate filtering strategy reduces mutual coupling by roughly a factor of 100 in power, a non-negligible amount of coupling cannot be excised with fringe-rate filters, so more sophisticated mitigation strategies are required.
2025
Settore PHYS-05/A - Astrofisica, cosmologia e scienza dello spazio
dark ages; reionization; first stars; instrumentation: interferometers; scattering; techniques: interferometric
   Forward-Models of Cosmic Dawn: connecting 21cm simulations to the real world
   FORWARD
   European Commission
   GA n. 101067043

   Illuminating the darkness with precision maps of neutral hydrogen across cosmic time
   MapItAll
   European Commission
   Horizon 2020 Framework Programme
   948764
File in questo prodotto:
File Dimensione Formato  
staf1012.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 2.39 MB
Formato Adobe PDF
2.39 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/156005
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex 1
social impact