We prove that every one-dimensional locally normal metric current, intended in the sense of U. Lang and S. Wenger, admits a nice integral representation through currents associated to (possibly unbounded) curves with locally finite length, generalizing the result shown by E. Paolini and E. Stepanov in the special case of Ambrosio-Kirchheim normal currents. Our result holds in Polish spaces, or more generally in complete metric spaces for 1-currents with tight support.

The superposition principle for local 1-dimensional currents

Ambrosio, Luigi
;
Renzi, Federico;Vitillaro, Federico
2026

Abstract

We prove that every one-dimensional locally normal metric current, intended in the sense of U. Lang and S. Wenger, admits a nice integral representation through currents associated to (possibly unbounded) curves with locally finite length, generalizing the result shown by E. Paolini and E. Stepanov in the special case of Ambrosio-Kirchheim normal currents. Our result holds in Polish spaces, or more generally in complete metric spaces for 1-currents with tight support.
2026
Settore MAT/05 - Analisi Matematica
Settore MATH-03/A - Analisi matematica
Currents; Metric spaces; Curves
   Gradient Flows and Non-Smooth Geometric Structures with Applications to Optimization and Machine Learning - 202244A7YL
   Ministero della pubblica istruzione, dell'università e della ricerca
File in questo prodotto:
File Dimensione Formato  
Superposition_final_journal.pdf

accesso aperto

Tipologia: Published version
Licenza: Licenza OA dell'editore
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/157263
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact