In their simplest form, metric-like Lagrangians for higher-spin massless fields are usually assumed to display constrained gauge symmetries, unless auxiliary fields are introduced or locality is foregone. Specifically, in its standard incarnation, gauge invariance of Maxwell-like Lagrangians relies on parameters with vanishing divergence. We find an alternative form of the corresponding local symmetry involving unconstrained gauge parameters of mixed-symmetry type, described by rectangular two-row Young diagrams and entering high-derivative gauge transformations. The resulting gauge algebra appears to be reducible and we display the full pattern of gauge-for-gauge parameters, testing its correctness via the corresponding counting of degrees of freedom. The algebraic techniques applied in this work also allow us to elucidate some general properties of linear gauge systems. In particular, we establish the general fact that any linear local field theory always admits unconstrained, local, and finitely reducible parametrization of the gauge symmetry. Incidentally, this shows that massless higher spins admit a local unconstrained formulation with no need for auxiliary fields.

On the gauge symmetries of Maxwell-like higher-spin Lagrangians

FRANCIA, DARIO;
2014

Abstract

In their simplest form, metric-like Lagrangians for higher-spin massless fields are usually assumed to display constrained gauge symmetries, unless auxiliary fields are introduced or locality is foregone. Specifically, in its standard incarnation, gauge invariance of Maxwell-like Lagrangians relies on parameters with vanishing divergence. We find an alternative form of the corresponding local symmetry involving unconstrained gauge parameters of mixed-symmetry type, described by rectangular two-row Young diagrams and entering high-derivative gauge transformations. The resulting gauge algebra appears to be reducible and we display the full pattern of gauge-for-gauge parameters, testing its correctness via the corresponding counting of degrees of freedom. The algebraic techniques applied in this work also allow us to elucidate some general properties of linear gauge systems. In particular, we establish the general fact that any linear local field theory always admits unconstrained, local, and finitely reducible parametrization of the gauge symmetry. Incidentally, this shows that massless higher spins admit a local unconstrained formulation with no need for auxiliary fields.
File in questo prodotto:
File Dimensione Formato  
OntheGaugeSymmetriesNPB_author.pdf

Accesso chiuso

Tipologia: Accepted version (post-print)
Licenza: Non pubblico
Dimensione 427.93 kB
Formato Adobe PDF
427.93 kB Adobe PDF   Richiedi una copia
1-s2.0-S0550321314000376-main.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 309.94 kB
Formato Adobe PDF
309.94 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/26389
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact