Given a real polynomial p(t) in one variable such that p(0) = 0, we consider the maximal operator in R2, Mpf(x1, x2)= sup h>0, i, jℤZ 1/h ∫ h0 |f(x1-2ip(t), x2-2jp(t))| dt. We prove that Mp is bounded on Lq(ℝ2) for q > 1 with bounds that only depend on the degree of p.
Maximal functions with polynomial densities in lacunary directions
RICCI, Fulvio
2003
Abstract
Given a real polynomial p(t) in one variable such that p(0) = 0, we consider the maximal operator in R2, Mpf(x1, x2)= sup h>0, i, jℤZ 1/h ∫ h0 |f(x1-2ip(t), x2-2jp(t))| dt. We prove that Mp is bounded on Lq(ℝ2) for q > 1 with bounds that only depend on the degree of p.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
HareMaximal functions with polynomial densitiesTrans. Amer. Math. Soc.20031135-1144 (electronic)355.pdf
Accesso chiuso
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
348.9 kB
Formato
Adobe PDF
|
348.9 kB | Adobe PDF | Richiedi una copia |
S0002-9947-02-03129-X.pdf
accesso aperto
Descrizione: article full text
Tipologia:
Altro materiale allegato
Licenza:
Solo Lettura
Dimensione
349.06 kB
Formato
Adobe PDF
|
349.06 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.