We deal with a class on nonlinear Schr¨odinger equations (NLS) with potentials V (x) \simeq |x|^{-\alpha} , 0 < \alpha < 2, and K(x) \simeq |x|^{-\beta} , \beta > 0. Working in weighted Sobolev spaces, the existence of ground states belonging to W^{1,2}(R^N) is proved under the assumption that \sigma < p < (N + 2)/(N − 2) for some \sigma = \sigma_{N,\alpha,\beta} . Furthermore, it is shown that these are spikes concentrating at a minimum point of A = V^\theta K^{−2/(p−1)}, where \theta = (p + 1)/(p − 1) − 1/2.

Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity

Ambrosetti, Antonio;Malchiodi, Andrea
2005

Abstract

We deal with a class on nonlinear Schr¨odinger equations (NLS) with potentials V (x) \simeq |x|^{-\alpha} , 0 < \alpha < 2, and K(x) \simeq |x|^{-\beta} , \beta > 0. Working in weighted Sobolev spaces, the existence of ground states belonging to W^{1,2}(R^N) is proved under the assumption that \sigma < p < (N + 2)/(N − 2) for some \sigma = \sigma_{N,\alpha,\beta} . Furthermore, it is shown that these are spikes concentrating at a minimum point of A = V^\theta K^{−2/(p−1)}, where \theta = (p + 1)/(p − 1) − 1/2.
2005
Settore MAT/05 - Analisi Matematica
Nonlinear Schrödinger equations; Weighted Sobolev spaces;
   Variational Methods and Nonlinear Differential Equations.
   M.U.R.S.T.
File in questo prodotto:
File Dimensione Formato  
AFMJEMS.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 219.2 kB
Formato Adobe PDF
219.2 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/56015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 233
  • ???jsp.display-item.citation.isi??? 238
social impact