We deal with a Newtonian system like x over dots + V'(x) = 0. We suppose that V : R-n --> R possesses an (n - 1)-dimensional compact manifold M of critical points, and we prove the existence of arbitrarily slow periodic orbits. When the period tends to infinity these orbits, rescaled in time, converge to some closed geodesics on M.
Adiabatic limits of closed orbits for some Newtonian systems in R-n
Malchiodi, Andrea
2001
Abstract
We deal with a Newtonian system like x over dots + V'(x) = 0. We suppose that V : R-n --> R possesses an (n - 1)-dimensional compact manifold M of critical points, and we prove the existence of arbitrarily slow periodic orbits. When the period tends to infinity these orbits, rescaled in time, converge to some closed geodesics on M.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Asy-01.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
272.49 kB
Formato
Adobe PDF
|
272.49 kB | Adobe PDF | Richiedi una copia |
Adi5.pdf
accesso aperto
Tipologia:
Accepted version (post-print)
Licenza:
Solo Lettura
Dimensione
274.71 kB
Formato
Adobe PDF
|
274.71 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.