We deal with a Newtonian system like x over dots + V'(x) = 0. We suppose that V : R-n --> R possesses an (n - 1)-dimensional compact manifold M of critical points, and we prove the existence of arbitrarily slow periodic orbits. When the period tends to infinity these orbits, rescaled in time, converge to some closed geodesics on M.

Adiabatic limits of closed orbits for some Newtonian systems in R-n

Malchiodi, Andrea
2001

Abstract

We deal with a Newtonian system like x over dots + V'(x) = 0. We suppose that V : R-n --> R possesses an (n - 1)-dimensional compact manifold M of critical points, and we prove the existence of arbitrarily slow periodic orbits. When the period tends to infinity these orbits, rescaled in time, converge to some closed geodesics on M.
2001
Settore MAT/05 - Analisi Matematica
Closed geodesics; slow motion; periodic solutions; limit trajectories
File in questo prodotto:
File Dimensione Formato  
Asy-01.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 272.49 kB
Formato Adobe PDF
272.49 kB Adobe PDF   Richiedi una copia
Adi5.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 274.71 kB
Formato Adobe PDF
274.71 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/56043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact