We consider the equation −ε^2Δu+u = u^p in Ω ⊆ RN, where Ω is open, smooth and bounded, and we prove concentration of solutions along k-dimensional minimal submanifolds of ∂Ω, for N \geq 3 and for k ∈ {1, . . . , N − 2}. We impose Neumann boundary conditions, assuming 1 < p < (N −k +2)/(N −k − 2) and ε→0+. This result settles in full generality a phenomenon previously considered only in the particular case N = 3 and k = 1.

Concentration on minimal submanifolds for a singularly perturbed Neumann problem

Malchiodi, Andrea
2007

Abstract

We consider the equation −ε^2Δu+u = u^p in Ω ⊆ RN, where Ω is open, smooth and bounded, and we prove concentration of solutions along k-dimensional minimal submanifolds of ∂Ω, for N \geq 3 and for k ∈ {1, . . . , N − 2}. We impose Neumann boundary conditions, assuming 1 < p < (N −k +2)/(N −k − 2) and ε→0+. This result settles in full generality a phenomenon previously considered only in the particular case N = 3 and k = 1.
2007
Settore MAT/05 - Analisi Matematica
   Variational Methods and Nonlinear Differential Equations.
   M.U.R.S.T.
File in questo prodotto:
File Dimensione Formato  
MMAIM.pdf

accesso aperto

Tipologia: Published version
Licenza: Solo Lettura
Dimensione 559.19 kB
Formato Adobe PDF
559.19 kB Adobe PDF
0611558.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 625.48 kB
Formato Adobe PDF
625.48 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/56050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 62
  • OpenAlex ND
social impact