The aim of this paper is to show the existence of metrics (g) over bar (epsilon) on S(n), where (g) over bar (epsilon) is a perturbation of the standard metric (g) over bar (o), for which the Yamabe problem possesses a sequence of solutions unbounded in L(infinity)(S(n)). The metrics (g) over bar (epsilon) that we iind are of class C(k) On S(n) With (k less than or equal ton-3/4). We also prove some new multiplicity results.
Non-compactness and multiplicity results for the Yamabe problem on S(n)
Malchiodi, Andrea
2001
Abstract
The aim of this paper is to show the existence of metrics (g) over bar (epsilon) on S(n), where (g) over bar (epsilon) is a perturbation of the standard metric (g) over bar (o), for which the Yamabe problem possesses a sequence of solutions unbounded in L(infinity)(S(n)). The metrics (g) over bar (epsilon) that we iind are of class C(k) On S(n) With (k less than or equal ton-3/4). We also prove some new multiplicity results.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
yaminf2.pdf
Open Access dal 22/02/2003
Tipologia:
Accepted version (post-print)
Licenza:
Creative Commons
Dimensione
415.76 kB
Formato
Adobe PDF
|
415.76 kB | Adobe PDF | |
BM.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
256.67 kB
Formato
Adobe PDF
|
256.67 kB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.