The aim of this paper is to show the existence of metrics (g) over bar (epsilon) on S(n), where (g) over bar (epsilon) is a perturbation of the standard metric (g) over bar (o), for which the Yamabe problem possesses a sequence of solutions unbounded in L(infinity)(S(n)). The metrics (g) over bar (epsilon) that we iind are of class C(k) On S(n) With (k less than or equal ton-3/4). We also prove some new multiplicity results.

Non-compactness and multiplicity results for the Yamabe problem on S(n)

Malchiodi, Andrea
2001

Abstract

The aim of this paper is to show the existence of metrics (g) over bar (epsilon) on S(n), where (g) over bar (epsilon) is a perturbation of the standard metric (g) over bar (o), for which the Yamabe problem possesses a sequence of solutions unbounded in L(infinity)(S(n)). The metrics (g) over bar (epsilon) that we iind are of class C(k) On S(n) With (k less than or equal ton-3/4). We also prove some new multiplicity results.
2001
Settore MAT/05 - Analisi Matematica
Prescribing scalar curvature; variational approach; homoclinics; equations; manifolds
   Variational methods and nonlinear dfferential equations.
   M.U.R.S.T.
File in questo prodotto:
File Dimensione Formato  
yaminf2.pdf

Open Access dal 22/02/2003

Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 415.76 kB
Formato Adobe PDF
415.76 kB Adobe PDF
BM.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 256.67 kB
Formato Adobe PDF
256.67 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/56071
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 38
  • OpenAlex ND
social impact