Given a smooth bounded domain, we consider the delta-v equation. We prescribe Dirichlet boundary datum, and consider the case in which this datum converges to zero. An asymptotic study of the corresponding Euler functional is performed, analyzing multiple-bubbling phenomena. This allows us to settle a particular case of a question raised by H. Brezis and J.M. Coron in [9].
Asymptotic Morse Theory for the Delta-V Equation
Chanillo, Sagun;Malchiodi, Andrea
2005
Abstract
Given a smooth bounded domain, we consider the delta-v equation. We prescribe Dirichlet boundary datum, and consider the case in which this datum converges to zero. An asymptotic study of the corresponding Euler functional is performed, analyzing multiple-bubbling phenomena. This allows us to settle a particular case of a question raised by H. Brezis and J.M. Coron in [9].File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CAG-2005-0013-0001-00024983.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Solo Lettura
Dimensione
480.55 kB
Formato
Adobe PDF
|
480.55 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.