Given a smooth bounded domain, we consider the delta-v equation. We prescribe Dirichlet boundary datum, and consider the case in which this datum converges to zero. An asymptotic study of the corresponding Euler functional is performed, analyzing multiple-bubbling phenomena. This allows us to settle a particular case of a question raised by H. Brezis and J.M. Coron in [9].

Asymptotic Morse Theory for the Delta-V Equation

Chanillo, Sagun;Malchiodi, Andrea
2005

Abstract

Given a smooth bounded domain, we consider the delta-v equation. We prescribe Dirichlet boundary datum, and consider the case in which this datum converges to zero. An asymptotic study of the corresponding Euler functional is performed, analyzing multiple-bubbling phenomena. This allows us to settle a particular case of a question raised by H. Brezis and J.M. Coron in [9].
2005
Settore MAT/05 - Analisi Matematica
H-surfaces; Robin function; non-compactness; nonlinear elliptic systems
   Variational Methods and Nonlinear Differential Equations.
   M.U.R.S.T.

   Fulbright Fellowship
   Fulbright Foundation
File in questo prodotto:
File Dimensione Formato  
CAG-2005-0013-0001-00024983.pdf

accesso aperto

Tipologia: Published version
Licenza: Solo Lettura
Dimensione 480.55 kB
Formato Adobe PDF
480.55 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/56086
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact