Given a compact closed surface Sigma, we consider the generalized Toda system of equations on Sigma: -Delta u(i) = Sigma(2)(j)=1 rho(j)a(ij) (h(j)e(j)(u)/integral(Sigma)h(j)(euj)dV(g) - 1) for i = 1, 2, where rho(1), rho(2) are real parameters and h(1), h(2) are smooth positive functions. Exploiting the variational structure of the problem and using a new min-max scheme we prove existence of solutions for generic values of rho(1) and for rho(2) < 4 pi.
Some existence results for the Toda system on closed surfaces
Malchiodi, Andrea
;
2007
Abstract
Given a compact closed surface Sigma, we consider the generalized Toda system of equations on Sigma: -Delta u(i) = Sigma(2)(j)=1 rho(j)a(ij) (h(j)e(j)(u)/integral(Sigma)h(j)(euj)dV(g) - 1) for i = 1, 2, where rho(1), rho(2) are real parameters and h(1), h(2) are smooth positive functions. Exploiting the variational structure of the problem and using a new min-max scheme we prove existence of solutions for generic values of rho(1) and for rho(2) < 4 pi.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
todanew.pdf
accesso aperto
Tipologia:
Accepted version (post-print)
Licenza:
Solo Lettura
Dimensione
252.8 kB
Formato
Adobe PDF
|
252.8 kB | Adobe PDF | |
Some existence results Malchiodi.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
187.42 kB
Formato
Adobe PDF
|
187.42 kB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.