Given a compact closed surface Sigma, we consider the generalized Toda system of equations on Sigma: -Delta u(i) = Sigma(2)(j)=1 rho(j)a(ij) (h(j)e(j)(u)/integral(Sigma)h(j)(euj)dV(g) - 1) for i = 1, 2, where rho(1), rho(2) are real parameters and h(1), h(2) are smooth positive functions. Exploiting the variational structure of the problem and using a new min-max scheme we prove existence of solutions for generic values of rho(1) and for rho(2) < 4 pi.

Some existence results for the Toda system on closed surfaces

Malchiodi, Andrea
;
2007

Abstract

Given a compact closed surface Sigma, we consider the generalized Toda system of equations on Sigma: -Delta u(i) = Sigma(2)(j)=1 rho(j)a(ij) (h(j)e(j)(u)/integral(Sigma)h(j)(euj)dV(g) - 1) for i = 1, 2, where rho(1), rho(2) are real parameters and h(1), h(2) are smooth positive functions. Exploiting the variational structure of the problem and using a new min-max scheme we prove existence of solutions for generic values of rho(1) and for rho(2) < 4 pi.
2007
Settore MAT/05 - Analisi Matematica
Toda system; variational methods; min-max schemes
File in questo prodotto:
File Dimensione Formato  
todanew.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 252.8 kB
Formato Adobe PDF
252.8 kB Adobe PDF
Some existence results Malchiodi.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 187.42 kB
Formato Adobe PDF
187.42 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/56100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 46
  • OpenAlex ND
social impact