We prove the existence of positive solutions for the equation on Sn −4 ×(n−1)/(n−2)∆g0 u + n(n − 1)u = (1 + εK0(x))u2∗−1 , where ∆g0 is the Laplace-Beltrami operator on Sn, 2∗ is the critical Sobolev exponent, and ε is a small parameter. The problem can be reduced to a finite dimensional study which is performed via Morse theory
The scalar curvature problem on Sⁿ: an approach via Morse theory
Malchiodi, Andrea
2002
Abstract
We prove the existence of positive solutions for the equation on Sn −4 ×(n−1)/(n−2)∆g0 u + n(n − 1)u = (1 + εK0(x))u2∗−1 , where ∆g0 is the Laplace-Beltrami operator on Sn, 2∗ is the critical Sobolev exponent, and ε is a small parameter. The problem can be reduced to a finite dimensional study which is performed via Morse theoryFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
morse.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
182.87 kB
Formato
Adobe PDF
|
182.87 kB | Adobe PDF | Richiedi una copia |
newmor2.pdf
accesso aperto
Tipologia:
Accepted version (post-print)
Licenza:
Solo Lettura
Dimensione
381.39 kB
Formato
Adobe PDF
|
381.39 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.