We prove the existence of positive solutions for the equation on Sn −4 ×(n−1)/(n−2)∆g0 u + n(n − 1)u = (1 + εK0(x))u2∗−1 , where ∆g0 is the Laplace-Beltrami operator on Sn, 2∗ is the critical Sobolev exponent, and ε is a small parameter. The problem can be reduced to a finite dimensional study which is performed via Morse theory

The scalar curvature problem on Sⁿ: an approach via Morse theory

Malchiodi, Andrea
2002

Abstract

We prove the existence of positive solutions for the equation on Sn −4 ×(n−1)/(n−2)∆g0 u + n(n − 1)u = (1 + εK0(x))u2∗−1 , where ∆g0 is the Laplace-Beltrami operator on Sn, 2∗ is the critical Sobolev exponent, and ε is a small parameter. The problem can be reduced to a finite dimensional study which is performed via Morse theory
2002
Settore MAT/05 - Analisi Matematica
   Variational methods and nonlinear di erential equations.
   M.U.R.S.T.
File in questo prodotto:
File Dimensione Formato  
morse.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 182.87 kB
Formato Adobe PDF
182.87 kB Adobe PDF   Richiedi una copia
newmor2.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 381.39 kB
Formato Adobe PDF
381.39 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/56165
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 25
  • OpenAlex ND
social impact