The aim of the present paper is to bridge the gap between the Bakry-'{E}mery and the Lott-Sturm-Villani approaches to provide synthetic and abstract notions of lower Ricci curvature bounds. We start from a strongly local Dirichlet form ${{mathcal{E}}}$ admitting a Carr'{e} du champ $Gamma$ in a Polish measure space $(X,mathfrak{m})$ and a canonical distance ${mathsf{d}}_{{{mathcal{E}}}}$ that induces the original topology of $X$. We first characterize the distinguished class of Riemannian Energy measure spaces, where ${mathcal{E}}$ coincides with the Cheeger energy induced by ${mathsf{d}}_{{mathcal{E}}}$ and where every function $f$ with $Gamma(f)le1$ admits a continuous representative. In such a class, we show that if ${{mathcal{E}}}$ satisfies a suitable weak form of the Bakry-'{E}mery curvature dimension condition $mathrm {BE}(K,infty)$ then the metric measure space $(X,{mathsf{d}},mathfrak{m})$ satisfies the Riemannian Ricci curvature bound $mathrm {RCD}(K,infty)$ according to [Duke Math. J. 163 (2014) 1405-1490], thus showing the equivalence of the two notions. Two applications are then proved: the tensorization property for Riemannian Energy spaces satisfying the Bakry-'{E}mery $mathrm {BE}(K,N)$ condition (and thus the corresponding one for $mathrm {RCD}(K,infty)$ spaces without assuming nonbranching) and the stability of $mathrm {BE}(K,N)$ with respect to Sturm-Gromov-Hausdorff convergence.

Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds

AMBROSIO, Luigi;
2015

Abstract

The aim of the present paper is to bridge the gap between the Bakry-'{E}mery and the Lott-Sturm-Villani approaches to provide synthetic and abstract notions of lower Ricci curvature bounds. We start from a strongly local Dirichlet form ${{mathcal{E}}}$ admitting a Carr'{e} du champ $Gamma$ in a Polish measure space $(X,mathfrak{m})$ and a canonical distance ${mathsf{d}}_{{{mathcal{E}}}}$ that induces the original topology of $X$. We first characterize the distinguished class of Riemannian Energy measure spaces, where ${mathcal{E}}$ coincides with the Cheeger energy induced by ${mathsf{d}}_{{mathcal{E}}}$ and where every function $f$ with $Gamma(f)le1$ admits a continuous representative. In such a class, we show that if ${{mathcal{E}}}$ satisfies a suitable weak form of the Bakry-'{E}mery curvature dimension condition $mathrm {BE}(K,infty)$ then the metric measure space $(X,{mathsf{d}},mathfrak{m})$ satisfies the Riemannian Ricci curvature bound $mathrm {RCD}(K,infty)$ according to [Duke Math. J. 163 (2014) 1405-1490], thus showing the equivalence of the two notions. Two applications are then proved: the tensorization property for Riemannian Energy spaces satisfying the Bakry-'{E}mery $mathrm {BE}(K,N)$ condition (and thus the corresponding one for $mathrm {RCD}(K,infty)$ spaces without assuming nonbranching) and the stability of $mathrm {BE}(K,N)$ with respect to Sturm-Gromov-Hausdorff convergence.
2015
Settore MAT/05 - Analisi Matematica
Mathematics - Functional Analysis; Mathematics - Functional Analysis; Mathematics - Analysis of PDEs; Mathematics - Metric Geometry; Mathematics - Probability; Ricci curvature; Barky–Émery condition; metric measure space; Dirichlet form; Gamma calculus
File in questo prodotto:
File Dimensione Formato  
1209.5786v3.pdf

accesso aperto

Tipologia: Submitted version (pre-print)
Licenza: Creative Commons
Dimensione 692.73 kB
Formato Adobe PDF
692.73 kB Adobe PDF
Annals_of_Probability_2015.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 642.52 kB
Formato Adobe PDF
642.52 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/57122
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 167
  • ???jsp.display-item.citation.isi??? 156
social impact