We discuss a gap in Besse’s book (Einstein manifolds, 2008), recently pointed out by Merton in (Proc Am Math Soc 141:3265–3273, 2013), which concerns the classification of Riemannian manifolds admitting a Codazzi tensors with exactly two distinct eigenvalues. For such manifolds, we prove a structure theorem, without adding extra hypotheses and then we conclude with some application of this theory to the classification of three-dimensional gradient Ricci solitons.

Locally conformally flat ancient Ricci flows

CATINO, GIOVANNI;MANTEGAZZA, Carlo Maria;MAZZIERI, LORENZO
In corso di stampa

Abstract

We discuss a gap in Besse’s book (Einstein manifolds, 2008), recently pointed out by Merton in (Proc Am Math Soc 141:3265–3273, 2013), which concerns the classification of Riemannian manifolds admitting a Codazzi tensors with exactly two distinct eigenvalues. For such manifolds, we prove a structure theorem, without adding extra hypotheses and then we conclude with some application of this theory to the classification of three-dimensional gradient Ricci solitons.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/57219
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact