Abstract We give a notion of BV function on an oriented manifold where a volume form and a family of lower semicontinuous quadratic forms Gp:TpM→[0,∞] are given. When we consider sub-Riemannian manifolds, our definition coincides with the one given in the more general context of metric measure spaces which are doubling and support a Poincaré inequality. We focus on finite perimeter sets, i.e., sets whose characteristic function is BV, in sub-Riemannian manifolds. Under an assumption on the nilpotent approximation, we prove a blowup theorem, generalizing the one obtained for step-2 Carnot groups in [24].

First we study in detail the tensorization properties of weak gradients in metric measure spaces $(X,d,mm)$. Then, we compare potentially different notions of Sobolev space $H^{1,1}(X,d,mm)$ and of weak gradient with exponent 1. Eventually we apply these results to compare the area functional $intsqrt{1+| abla f|_w^2},dmm$ with the perimeter of the subgraph of $f$, in the same spirit as the classical theory.

BV functions and sets of finite perimeter in sub-Riemannian manifolds

AMBROSIO, Luigi;
2015

Abstract

First we study in detail the tensorization properties of weak gradients in metric measure spaces $(X,d,mm)$. Then, we compare potentially different notions of Sobolev space $H^{1,1}(X,d,mm)$ and of weak gradient with exponent 1. Eventually we apply these results to compare the area functional $intsqrt{1+| abla f|_w^2},dmm$ with the perimeter of the subgraph of $f$, in the same spirit as the classical theory.
Settore MAT/05 - Analisi Matematica
File in questo prodotto:
File Dimensione Formato  
Ambrosio_Ghezzi_Magnani.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 482.46 kB
Formato Adobe PDF
482.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Ambrosio_Magnani_Ghezzi.pdf

Accesso chiuso

Descrizione: Post-Print
Tipologia: Accepted version (post-print)
Licenza: Non pubblico
Dimensione 543.62 kB
Formato Adobe PDF
543.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/60321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact