In this paper we consider the following Toda system of equations on a compact surface: −Δu₁ = 2ρ1 (h₁eᵘ1 ⁻ ¹) − ρ2 (h₂eᵘ² ⁻ ¹) , −Δu₂ = 2ρ2 (h₂eᵘ² ⁻ ¹) − ρ1 (h₁eᵘ1 ⁻ ¹) . Here h₁, h₂ are smooth positive functions and ρ1, ρ2 two positive parameters. In this note we compute the Leray-Schauder degree mod ℤ₂ of the problem for ρᵢ ∈ (4πk, 4π(k + 1)) (k ∈ ℕ). Our main tool is a theorem of Krasnoselskii and Zabreiko on the degree of maps symmetric with respect to a subspace. This result yields new existence results as well as a new proof of previous results in the literature."
On the Leray-Schauder degree of the Toda system on compact surfaces
MALCHIODI, ANDREA
;
2015
Abstract
In this paper we consider the following Toda system of equations on a compact surface: −Δu₁ = 2ρ1 (h₁eᵘ1 ⁻ ¹) − ρ2 (h₂eᵘ² ⁻ ¹) , −Δu₂ = 2ρ2 (h₂eᵘ² ⁻ ¹) − ρ1 (h₁eᵘ1 ⁻ ¹) . Here h₁, h₂ are smooth positive functions and ρ1, ρ2 two positive parameters. In this note we compute the Leray-Schauder degree mod ℤ₂ of the problem for ρᵢ ∈ (4πk, 4π(k + 1)) (k ∈ ℕ). Our main tool is a theorem of Krasnoselskii and Zabreiko on the degree of maps symmetric with respect to a subspace. This result yields new existence results as well as a new proof of previous results in the literature."File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MR-PAMS.pdf
Accesso chiuso
Descrizione: MR-PAMS
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
132.48 kB
Formato
Adobe PDF
|
132.48 kB | Adobe PDF | Richiedi una copia |
todagrado-v2
accesso aperto
Descrizione: pdf file
Tipologia:
Accepted version (post-print)
Licenza:
Creative Commons
Dimensione
126.5 kB
Formato
Adobe PDF
|
126.5 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.