In this paper we consider the following Toda system of equations on a compact surface:(Formula presented). Here h1, h2 are smooth positive functions and ρ1, ρ2 two positive parameters. In this note we compute the Leray-Schauder degree mod Z2 of the problem for ρi ∈ (4πk, 4π(k +1)) (k ∈ N). Our main tool is a theorem of Krasnoselskii and Zabreiko on the degree of maps symmetric with respect to a subspace. This result yields new existence results as well as a new proof of previous results in the literature.

In this paper we consider the following Toda system of equations on a compact surface: { -Delta u(1) = 2 rho(1) (h(1)e(u1) - 1) - rho(2) (h(2)e(u2) - 1), -Delta u(2) = 2 rho(2) (h(2)e(u2) - 1) - rho(1) (h(1)e(u1) - 1). Here h(1), h(2) are smooth positive functions and rho(1), rho(2) two positive parameters. In this note we compute the Leray-Schauder degree mod Z(2) of the problem for rho(i) is an element of (4 pi k, 4 pi(k + 1)) (k is an element of N). Our main tool is a theorem of Krasnoselskii and Zabreiko on the degree of maps symmetric with respect to a subspace. This result yields new existence results as well as a new proof of previous results in the literature.

On the Leray-Schauder degree of the Toda system on compact surfaces

MALCHIODI, ANDREA
;
2015

Abstract

In this paper we consider the following Toda system of equations on a compact surface: { -Delta u(1) = 2 rho(1) (h(1)e(u1) - 1) - rho(2) (h(2)e(u2) - 1), -Delta u(2) = 2 rho(2) (h(2)e(u2) - 1) - rho(1) (h(1)e(u1) - 1). Here h(1), h(2) are smooth positive functions and rho(1), rho(2) two positive parameters. In this note we compute the Leray-Schauder degree mod Z(2) of the problem for rho(i) is an element of (4 pi k, 4 pi(k + 1)) (k is an element of N). Our main tool is a theorem of Krasnoselskii and Zabreiko on the degree of maps symmetric with respect to a subspace. This result yields new existence results as well as a new proof of previous results in the literature.
2015
Settore MAT/05 - Analisi Matematica
Geometric PDEs; Leray-schauder degree;
File in questo prodotto:
File Dimensione Formato  
MR-PAMS.pdf

Accesso chiuso

Descrizione: MR-PAMS
Tipologia: Published version
Licenza: Non pubblico
Dimensione 132.48 kB
Formato Adobe PDF
132.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
todagrado-v2

accesso aperto

Descrizione: pdf file
Tipologia: Accepted version (post-print)
Licenza: Creative commons
Dimensione 126.5 kB
Formato Adobe PDF
126.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/60617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact