In this note, we prove that on a surface with Alexandrov’s curvature bounded below, the distance derives from a Riemannian metric whose components, for any p ∈ [1, 2), locally belong to W1,p out of a discrete singular set. This result is based on Reshetnyak’s work on the more general class of surfaces with bounded integral curvature.
On the Regularity of Alexandrov Surfaces with Curvature Bounded Below
AMBROSIO, Luigi;
2016
Abstract
In this note, we prove that on a surface with Alexandrov’s curvature bounded below, the distance derives from a Riemannian metric whose components, for any p ∈ [1, 2), locally belong to W1,p out of a discrete singular set. This result is based on Reshetnyak’s work on the more general class of surfaces with bounded integral curvature.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
SurfaceRev2.pdf
solo utenti autorizzati
Descrizione: Preprint del lavoro accettato per la pubblicazione
Tipologia:
Submitted version (pre-print)
Licenza:
Non pubblico
Dimensione
398.25 kB
Formato
Adobe PDF
|
398.25 kB | Adobe PDF | Richiedi una copia |
On-the-Regularity.pdf
accesso aperto
Descrizione: journal article full text
Tipologia:
Altro materiale allegato
Licenza:
Creative Commons
Dimensione
380.77 kB
Formato
Adobe PDF
|
380.77 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.