We present the first prototype of a silicon tracker using the artificial retina algorithm for fast track finding. The algorithm is inspired by the neurobiological mechanism of recognition of edges in mammals visual cortex. It is based on extensive parallelization and is implemented on commercial FPGAs allowing us to reconstruct real time tracks with offline-like quality and < 1 mu s latencies. The practical device consists of a telescope with 8 single-sided silicon strip sensors and custom DAQ boards equipped with Xilinx Kintex 7 FPGAs that perform the readout of the sensors and the track reconstruction in real time. (C) 2015 Elsevier B.V. All rights reserved.

Real time tracking with a silicon telescope prototype using the "artificial retina" algorithm

CENCI, RICCARDO;MARINO, PIETRO;MORELLO, MICHAEL JOSEPH;
2016

Abstract

We present the first prototype of a silicon tracker using the artificial retina algorithm for fast track finding. The algorithm is inspired by the neurobiological mechanism of recognition of edges in mammals visual cortex. It is based on extensive parallelization and is implemented on commercial FPGAs allowing us to reconstruct real time tracks with offline-like quality and < 1 mu s latencies. The practical device consists of a telescope with 8 single-sided silicon strip sensors and custom DAQ boards equipped with Xilinx Kintex 7 FPGAs that perform the readout of the sensors and the track reconstruction in real time. (C) 2015 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/66116
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact