We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hilbert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov’s fundamental result on Rd to infinite dimensions. Because Sobolev regularity results implying continuity or smoothness of functions do not hold on infinite-dimensional spaces, we employ methods and results developed in the study of Malliavin–Sobolev spaces in infinite dimensions. The price we pay is that we can prove uniqueness for a large class, but not for every initial distribution. Such restriction, however, is common in infinite dimensions.

Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift

Da Prato, G.;Flandoli, F.;
2013

Abstract

We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hilbert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov’s fundamental result on Rd to infinite dimensions. Because Sobolev regularity results implying continuity or smoothness of functions do not hold on infinite-dimensional spaces, we employ methods and results developed in the study of Malliavin–Sobolev spaces in infinite dimensions. The price we pay is that we can prove uniqueness for a large class, but not for every initial distribution. Such restriction, however, is common in infinite dimensions.
File in questo prodotto:
File Dimensione Formato  
euclid.aop.1378991841.pdf

accesso aperto

Descrizione: journal article full text
Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 287.51 kB
Formato Adobe PDF
287.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/69117
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 58
social impact