In this note we prove in the nonlinear setting of CD (K, ∞) spaces the stability of the Krasnoselskii spectrum of the Laplace operator -Δ under measured Gromov–Hausdorff convergence, under an additional compactness assumption satisfied, for instance, by sequences of CD ∗(K, N) metric measure spaces with uniformly bounded diameter. Additionally, we show that every element λ in the Krasnoselskii spectrum is indeed an eigenvalue, namely there exists a nontrivial u satisfying the eigenvalue equation -Δu=λu.

In this note we prove in the nonlinear setting of CD (K, ∞) spaces the stability of the Krasnoselskii spectrum of the Laplace operator -Δ under measured Gromov–Hausdorff convergence, under an additional compactness assumption satisfied, for instance, by sequences of CD∗(K, N) metric measure spaces with uniformly bounded diameter. Additionally, we show that every element λ in the Krasnoselskii spectrum is indeed an eigenvalue, namely there exists a nontrivial u satisfying the eigenvalue equation -Δu=λu.

Continuity of nonlinear eigenvalues in CD (K, ∞) spaces with respect to measured Gromov–Hausdorff convergence

Luigi Ambrosio;
2018

Abstract

In this note we prove in the nonlinear setting of CD (K, ∞) spaces the stability of the Krasnoselskii spectrum of the Laplace operator -Δ under measured Gromov–Hausdorff convergence, under an additional compactness assumption satisfied, for instance, by sequences of CD ∗(K, N) metric measure spaces with uniformly bounded diameter. Additionally, we show that every element λ in the Krasnoselskii spectrum is indeed an eigenvalue, namely there exists a nontrivial u satisfying the eigenvalue equation -Δu=λu.
2018
Settore MAT/05 - Analisi Matematica
49J35; 49J52; 49R05; 58J35; Analysis; Applied Mathematics
File in questo prodotto:
File Dimensione Formato  
Calc.Var_2018.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 515.55 kB
Formato Adobe PDF
515.55 kB Adobe PDF   Richiedi una copia
Continuity-Spectrum-Nonlinear-2017-06-24.pdf

Open Access dal 13/02/2019

Descrizione: Post Print
Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 188.42 kB
Formato Adobe PDF
188.42 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/74164
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact