Recent data indicate that nuclear lamina (NL) plays a relevant role in many fundamental cellular functions. The peculiar role of NL in cells is dramatically demonstrated by the Hutchinson-Gilford progeria syndrome (HGPS), an inherited laminopathy that causes premature, rapid aging shortly after birth. In HGPS, a mutant form of Lamin A (progeria) leads to a dysmorphic NL structure, but how this perturbation is transduced into cellular changes is still largely unknown. Owing to the close structural relationship between NL and the Nuclear Pore Complex (NPC), in this work we test whether HGPS affects passive and active nucleo-cytoplasmic shuttling of cargoes by means of an established model based of fluorescence recovery after photobleaching. Our findings clearly demonstrate that dysmorphic NL is decoupled from the dynamic characteristics of passive and active transport towards and from the nucleus, as well as from the binding affinity of transport protein mediators.

Nucleocytoplasmic transport in cells with progerin-induced defective nuclear lamina

Ferri Gianmarco;Storti Barbara;Bizzarri Ranieri
2017

Abstract

Recent data indicate that nuclear lamina (NL) plays a relevant role in many fundamental cellular functions. The peculiar role of NL in cells is dramatically demonstrated by the Hutchinson-Gilford progeria syndrome (HGPS), an inherited laminopathy that causes premature, rapid aging shortly after birth. In HGPS, a mutant form of Lamin A (progeria) leads to a dysmorphic NL structure, but how this perturbation is transduced into cellular changes is still largely unknown. Owing to the close structural relationship between NL and the Nuclear Pore Complex (NPC), in this work we test whether HGPS affects passive and active nucleo-cytoplasmic shuttling of cargoes by means of an established model based of fluorescence recovery after photobleaching. Our findings clearly demonstrate that dysmorphic NL is decoupled from the dynamic characteristics of passive and active transport towards and from the nucleus, as well as from the binding affinity of transport protein mediators.
2017
Active Transport, Cell Nucleus, Cell Line, Tumor, Fluorescence Recovery After Photobleaching, FRAP, Humans, Lamin Type A, Microscopy, Fluorescence, Models, Biological, Nuclear export signal (NES), Nuclear lamin, Nuclear Lamina, Nuclear localization signal (NLS), Nucleocytoplasmic transport, Progeria, Protein Precursors, Recombinant Fusion Proteins
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/76506
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact