We study a rapidly rotating Bose-Einstein condensate confined to a finite trap in the framework of two-dimensional Gross-Pitaevskii theory in the strong coupling (Thomas-Fermi) limit. Denoting the coupling parameter by 1/epsilon(2) and the rotational velocity by Omega, we evaluate exactly the next to the leading-order contribution to the ground-state energy in the parameter regime vertical bar log epsilon vertical bar << Omega << 1/(epsilon(2)vertical bar log epsilon vertical bar) with epsilon -> 0. While the TF energy includes only the contribution of the centrifugal forces the next order corresponds to a lattice of vortices whose density is proportional to the rotational velocity.

Energy and vorticity in fast rotating Bose-Einstein condensates

Correggi, Michele
;
2008

Abstract

We study a rapidly rotating Bose-Einstein condensate confined to a finite trap in the framework of two-dimensional Gross-Pitaevskii theory in the strong coupling (Thomas-Fermi) limit. Denoting the coupling parameter by 1/epsilon(2) and the rotational velocity by Omega, we evaluate exactly the next to the leading-order contribution to the ground-state energy in the parameter regime vertical bar log epsilon vertical bar << Omega << 1/(epsilon(2)vertical bar log epsilon vertical bar) with epsilon -> 0. While the TF energy includes only the contribution of the centrifugal forces the next order corresponds to a lattice of vortices whose density is proportional to the rotational velocity.
2008
Settore MAT/07 - Fisica Matematica
Mathematical Physics; physics and astronomy (all); statistical and nonlinear physics; modeling and simulation; statistics and probability; dilute; traps; gases; Bose-Einstein condensates; vortices
File in questo prodotto:
File Dimensione Formato  
0806.3191.pdf

accesso aperto

Tipologia: Submitted version (pre-print)
Licenza: Solo Lettura
Dimensione 268.14 kB
Formato Adobe PDF
268.14 kB Adobe PDF
Correggi_Energy_vorticity_2008.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 312.13 kB
Formato Adobe PDF
312.13 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/79628
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
  • OpenAlex ND
social impact