In this paper we consider approximations `a la Sacks-Uhlenbeck of the harmonic energy for maps from S2 into S2. We continue the analysis in [6] about limits of α-harmonic maps with uniformly bounded energy. Using a recent energy identity in [7], we obtain an optimal gap theorem for the α-harmonic maps of degree −1, 0 or 1.

We consider approximations introduced by Sacks and Uhlenbeck of the harmonic energy for maps from S 2 into S2. We continue our previous analysis (J. Differential Geom. 116:2 (2020), 321-348) on limits of a-harmonic maps with uniformly bounded energy. Using a recent energy identity of Li and Zhu (Ann. Inst. H. Poincaré Anal. Non Linéaire 36:1 (2019), 103-118), we obtain an optimal gap theorem for the a-harmonic maps of degree -1,0 or 1.

A Gap Theorem for alpha-harmonic maps between two-spheres

Andrea Malchiodi;
2021

Abstract

We consider approximations introduced by Sacks and Uhlenbeck of the harmonic energy for maps from S 2 into S2. We continue our previous analysis (J. Differential Geom. 116:2 (2020), 321-348) on limits of a-harmonic maps with uniformly bounded energy. Using a recent energy identity of Li and Zhu (Ann. Inst. H. Poincaré Anal. Non Linéaire 36:1 (2019), 103-118), we obtain an optimal gap theorem for the a-harmonic maps of degree -1,0 or 1.
2021
Settore MAT/05 - Analisi Matematica
gap theorems; α-harmonic maps;
   Fondi MUR
File in questo prodotto:
File Dimensione Formato  
LMM-APDE-21.pdf

Accesso chiuso

Descrizione: pdf file
Tipologia: Published version
Licenza: Non pubblico
Dimensione 510.33 kB
Formato Adobe PDF
510.33 kB Adobe PDF   Richiedi una copia
11384_81848.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 156.12 kB
Formato Adobe PDF
156.12 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/81848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact