We are concerned with a super-Liouville equation on compact surfaces with genus larger than one, obtaining the first non-trivial existence result for this class of problems via min-max methods. In particular we make use of a Nehari manifold and, after showing the validity of the Palais-Smale condition, we exhibit either a mountain pass or linking geometry.

Existence results for a super-Liouville equation on compact surfaces

Aleks Jevnikar
;
Andrea Malchiodi;Ruijun Wu
2020

Abstract

We are concerned with a super-Liouville equation on compact surfaces with genus larger than one, obtaining the first non-trivial existence result for this class of problems via min-max methods. In particular we make use of a Nehari manifold and, after showing the validity of the Palais-Smale condition, we exhibit either a mountain pass or linking geometry.
2020
Settore MAT/05 - Analisi Matematica
super-Liouville equation, existence results, min-max methods
File in questo prodotto:
File Dimensione Formato  
Super Liouville-higher genus20200503.pdf

accesso aperto

Tipologia: Submitted version (pre-print)
Licenza: Solo Lettura
Dimensione 526.01 kB
Formato Adobe PDF
526.01 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/81855
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact