The role of 5,6-dihydroxyindole (DHI)-based oligomers, including porphyrin-like tetramers, in polydopamine (PDA) film formation was addressed by a comparative structural investigation against model polymers from DHI and its 2,7′-dimer. MALDI-MS data showed that (a) PDA is structurally different from DHI melanin and does not contain species compatible with DHI-based oligomers as primary building blocks; (b) PDA films and precipitate display a single main peak at m/z 402 in common; (c) no species matching the range of m/z values expected for cyclic porphyrin-type tetramers was detected in DHI melanin produced in the presence or in the absence of folic acid (FA) as templating agent, nor by oxidation of the 2,7′-dimer of DHI as putative precursor. 15N NMR resonances and Raman spectra predicted by extensive DFT calculations on porphyrin-type structures at various oxidation levels did not match spectral data for PDA or DHI melanin. Notably, unlike PDA, which gave structurally homogeneous films on quartz on atomic force microscopy (AFM) and micro-Raman spectroscopy, DHI melanin did not form any adhesive deposit after as long as 24 h. It is concluded that PDA film deposition involves structural components unrelated to DHI-based oligomers or porphyrin-type tetramers, which, on mechanism-based analysis, may arise by quinone−amine conjugation leading to polycyclic systems with extensive chain breakdown.

The structural basis of polydopamine film formation: probing 5,6-dihydroxyindole-based eumelanin type units and the porphyrin issue

Crescenzi, Orlando;D’ischia, Marco
2018-01-01

Abstract

The role of 5,6-dihydroxyindole (DHI)-based oligomers, including porphyrin-like tetramers, in polydopamine (PDA) film formation was addressed by a comparative structural investigation against model polymers from DHI and its 2,7′-dimer. MALDI-MS data showed that (a) PDA is structurally different from DHI melanin and does not contain species compatible with DHI-based oligomers as primary building blocks; (b) PDA films and precipitate display a single main peak at m/z 402 in common; (c) no species matching the range of m/z values expected for cyclic porphyrin-type tetramers was detected in DHI melanin produced in the presence or in the absence of folic acid (FA) as templating agent, nor by oxidation of the 2,7′-dimer of DHI as putative precursor. 15N NMR resonances and Raman spectra predicted by extensive DFT calculations on porphyrin-type structures at various oxidation levels did not match spectral data for PDA or DHI melanin. Notably, unlike PDA, which gave structurally homogeneous films on quartz on atomic force microscopy (AFM) and micro-Raman spectroscopy, DHI melanin did not form any adhesive deposit after as long as 24 h. It is concluded that PDA film deposition involves structural components unrelated to DHI-based oligomers or porphyrin-type tetramers, which, on mechanism-based analysis, may arise by quinone−amine conjugation leading to polycyclic systems with extensive chain breakdown.
eumelanin; polydopamine; 5; 6-dihydroxyindole; polymerization; film; porphyrin; tetramer; MALDI-MS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/84024
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 65
social impact