We show that the invariant measures of point vortices, when conditioning the Hamiltonian to a finite interval, converge weakly to the enstrophy measure by conditioning the renormalized energy to the same interval. We also prove the existence of solutions to 2D Euler equations having the energy conditional measure as an invariant measure. Some heuristic discussions and numerical simulations are presented in Sec. VI.

Energy conditional measures and 2D turbulence

Flandoli F.;Luo D.
2020

Abstract

We show that the invariant measures of point vortices, when conditioning the Hamiltonian to a finite interval, converge weakly to the enstrophy measure by conditioning the renormalized energy to the same interval. We also prove the existence of solutions to 2D Euler equations having the energy conditional measure as an invariant measure. Some heuristic discussions and numerical simulations are presented in Sec. VI.
2020
Settore MAT/06 - Probabilita' e Statistica Matematica
File in questo prodotto:
File Dimensione Formato  
013101_1_online.pdf

Open Access dal 08/01/2021

Tipologia: Published version
Licenza: Solo Lettura
Dimensione 5.15 MB
Formato Adobe PDF
5.15 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/84426
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact