The magnified infectious power of the SARS-CoV-2 virus compared to its precursor SARS-CoV is intimately linked to an enhanced ability in the mutated virus to find available hydrogen bond sites in the host cells. This characteristic is acquired during virus evolution because of the selective pressure exerted at the molecular level. We pinpoint the specific residue (in the virus) to residue (in the cell) contacts during the initial recognition and binding and show that the virus· · · cell interaction is mainly due to an extensive network of hydrogen bonds and to a large surface of non-covalent interactions. In addition to the formal quantum characterization of bonding interactions, computation of absorption spectra for the specific virus· · · cell interacting residues yields significant shifts of ∆λ max = 47 and 66 nm in the wavelength for maximum absorption in the complex with respect to the isolated host and virus, respectively.
Binding of SARS-CoV-2 to cell receptors: a tale of molecular evolution
Gomez, Sara;Egidi, Franco;Cappelli, Chiara;
2021
Abstract
The magnified infectious power of the SARS-CoV-2 virus compared to its precursor SARS-CoV is intimately linked to an enhanced ability in the mutated virus to find available hydrogen bond sites in the host cells. This characteristic is acquired during virus evolution because of the selective pressure exerted at the molecular level. We pinpoint the specific residue (in the virus) to residue (in the cell) contacts during the initial recognition and binding and show that the virus· · · cell interaction is mainly due to an extensive network of hydrogen bonds and to a large surface of non-covalent interactions. In addition to the formal quantum characterization of bonding interactions, computation of absorption spectra for the specific virus· · · cell interacting residues yields significant shifts of ∆λ max = 47 and 66 nm in the wavelength for maximum absorption in the complex with respect to the isolated host and virus, respectively.File | Dimensione | Formato | |
---|---|---|---|
cbic.202000618.pdf
Open Access dal 30/09/2021
Tipologia:
Accepted version (post-print)
Licenza:
Creative Commons
Dimensione
8.47 MB
Formato
Adobe PDF
|
8.47 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.