We present an ab initio correlated approach to study molecules that interact strongly with quantum fields in an optical cavity. Quantum electrodynamics coupled cluster theory provides a nonperturbative description of cavity-induced effects in ground and excited states. Using this theory, we show how quantum fields can be used to manipulate charge transfer and photochemical properties of molecules. We propose a strategy to lift electronic degeneracies and induce modifications in the ground-state potential energy surface close to a conical intersection.
Coupled Cluster Theory for Molecular Polaritons: Changing Ground and Excited States
Ronca E.;Koch H.
2020
Abstract
We present an ab initio correlated approach to study molecules that interact strongly with quantum fields in an optical cavity. Quantum electrodynamics coupled cluster theory provides a nonperturbative description of cavity-induced effects in ground and excited states. Using this theory, we show how quantum fields can be used to manipulate charge transfer and photochemical properties of molecules. We propose a strategy to lift electronic degeneracies and induce modifications in the ground-state potential energy surface close to a conical intersection.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
PhysRevX.10.041043.pdf
accesso aperto
Descrizione: Main article
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
2.56 MB
Formato
Adobe PDF
|
2.56 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.