The theory of isospectral flows comprises a large class of continuous dynamical systems, particularly integrable systems and Lie–Poisson systems. Their discretization is a classical problem in numerical analysis. Preserving the spectrum in the discrete flow requires the conservation of high order polynomials, which is hard to come by. Existing methods achieving this are complicated and usually fail to preserve the underlying Lie–Poisson structure. Here, we present a class of numerical methods of arbitrary order for Hamiltonian and non-Hamiltonian isospectral flows, which preserve both the spectra and the Lie–Poisson structure. The methods are surprisingly simple and avoid the use of constraints or exponential maps. Furthermore, due to preservation of the Lie–Poisson structure, they exhibit near conservation of the Hamiltonian function. As an illustration, we apply the methods to several classical isospectral flows.
Lie-Poisson methods for isospectral flows
Viviani, Milo;Modin, Klas
2020
Abstract
The theory of isospectral flows comprises a large class of continuous dynamical systems, particularly integrable systems and Lie–Poisson systems. Their discretization is a classical problem in numerical analysis. Preserving the spectrum in the discrete flow requires the conservation of high order polynomials, which is hard to come by. Existing methods achieving this are complicated and usually fail to preserve the underlying Lie–Poisson structure. Here, we present a class of numerical methods of arbitrary order for Hamiltonian and non-Hamiltonian isospectral flows, which preserve both the spectra and the Lie–Poisson structure. The methods are surprisingly simple and avoid the use of constraints or exponential maps. Furthermore, due to preservation of the Lie–Poisson structure, they exhibit near conservation of the Hamiltonian function. As an illustration, we apply the methods to several classical isospectral flows.File | Dimensione | Formato | |
---|---|---|---|
1. Lie–Poisson Methods for Isospectral Flows.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
3.42 MB
Formato
Adobe PDF
|
3.42 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.