The theory of isospectral flows comprises a large class of continuous dynamical systems, particularly integrable systems and Lie–Poisson systems. Their discretization is a classical problem in numerical analysis. Preserving the spectrum in the discrete flow requires the conservation of high order polynomials, which is hard to come by. Existing methods achieving this are complicated and usually fail to preserve the underlying Lie–Poisson structure. Here, we present a class of numerical methods of arbitrary order for Hamiltonian and non-Hamiltonian isospectral flows, which preserve both the spectra and the Lie–Poisson structure. The methods are surprisingly simple and avoid the use of constraints or exponential maps. Furthermore, due to preservation of the Lie–Poisson structure, they exhibit near conservation of the Hamiltonian function. As an illustration, we apply the methods to several classical isospectral flows.

Lie-Poisson methods for isospectral flows

Viviani, Milo;Modin, Klas
2020

Abstract

The theory of isospectral flows comprises a large class of continuous dynamical systems, particularly integrable systems and Lie–Poisson systems. Their discretization is a classical problem in numerical analysis. Preserving the spectrum in the discrete flow requires the conservation of high order polynomials, which is hard to come by. Existing methods achieving this are complicated and usually fail to preserve the underlying Lie–Poisson structure. Here, we present a class of numerical methods of arbitrary order for Hamiltonian and non-Hamiltonian isospectral flows, which preserve both the spectra and the Lie–Poisson structure. The methods are surprisingly simple and avoid the use of constraints or exponential maps. Furthermore, due to preservation of the Lie–Poisson structure, they exhibit near conservation of the Hamiltonian function. As an illustration, we apply the methods to several classical isospectral flows.
2020
Settore MATH-05/A - Analisi numerica
Geometric integration; Runge-Kutta methods; Lie-Poisson integrators
   CHallenges in Preservation of Structure
   CHiPS
   European Commission
   Horizon 2020 Framework Programme
   691070
File in questo prodotto:
File Dimensione Formato  
1. Lie–Poisson Methods for Isospectral Flows.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 3.42 MB
Formato Adobe PDF
3.42 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/148910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
  • OpenAlex 14
social impact