We establish quantitative second-order Sobolev regularity for functions having a 2-integrable p-Laplacian in bounded RCD spaces, with p in a suitable range. In the finite-dimensional case, we also obtain Lipschitz regularity under the assumption that p-Laplacian is sufficiently integrable. Our results cover both p-Laplacian eigenfunctions and p-harmonic functions having relatively compact level sets.
Second-order estimates for the p-Laplacian in RCD spaces
Benatti, Luca;Violo, Ivan Yuri
2025
Abstract
We establish quantitative second-order Sobolev regularity for functions having a 2-integrable p-Laplacian in bounded RCD spaces, with p in a suitable range. In the finite-dimensional case, we also obtain Lipschitz regularity under the assumption that p-Laplacian is sufficiently integrable. Our results cover both p-Laplacian eigenfunctions and p-harmonic functions having relatively compact level sets.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
p_Laplacian.pdf
Accesso chiuso
Descrizione: Articolo in rivista
Tipologia:
Accepted version (post-print)
Licenza:
Tutti i diritti riservati
Dimensione
692.51 kB
Formato
Adobe PDF
|
692.51 kB | Adobe PDF | Richiedi una copia |
|
1-s2.0-S0022039625004255-main.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



