We establish quantitative second-order Sobolev regularity for functions having a 2-integrable p-Laplacian in bounded RCD spaces, with p in a suitable range. In the finite-dimensional case, we also obtain Lipschitz regularity under the assumption that p-Laplacian is sufficiently integrable. Our results cover both p-Laplacian eigenfunctions and p-harmonic functions having relatively compact level sets.

Second-order estimates for the p-Laplacian in RCD spaces

Benatti, Luca;Violo, Ivan Yuri
2025

Abstract

We establish quantitative second-order Sobolev regularity for functions having a 2-integrable p-Laplacian in bounded RCD spaces, with p in a suitable range. In the finite-dimensional case, we also obtain Lipschitz regularity under the assumption that p-Laplacian is sufficiently integrable. Our results cover both p-Laplacian eigenfunctions and p-harmonic functions having relatively compact level sets.
2025
Settore MAT/05 - Analisi Matematica
Settore MATH-03/A - Analisi matematica
nonlinear potential theory; metric measure spaces; RCD spaces; regularity estimates; degenerate elliptic PDEs
   Variational approach to the regularity of the free boundaries
   VAREG
   European Commission
   Horizon 2020 Framework Programme
   853404

   Incidences on Fractals
   Finnish Academy

   Singular integrals, harmonic functions, and boundary regularity in Heisenberg groups
   Finnish Academy
   Grant No. 321696
File in questo prodotto:
File Dimensione Formato  
p_Laplacian.pdf

Accesso chiuso

Descrizione: Articolo in rivista
Tipologia: Accepted version (post-print)
Licenza: Tutti i diritti riservati
Dimensione 692.51 kB
Formato Adobe PDF
692.51 kB Adobe PDF   Richiedi una copia
1-s2.0-S0022039625004255-main.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/153063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex 1
social impact