The development of efficient techniques to distinguish mirror images of chiral molecules (enantiomers) is very important in both chemistry and physics. Enantiomers share most molecular properties except, for instance, the absorption of circularly polarized light. Enantiomer purification is therefore a challenging task that requires specialized equipment. Strong coupling between quantized fields and matter (e.g., in optical cavities) is a promising technique to modify molecular processes in a noninvasive way. The modulation of molecular properties is achieved by changing the field characteristics. In this work, we investigate whether strong coupling to circularly polarized electromagnetic fields is a viable way to discriminate chiral molecules. To this end, we develop a nonperturbative framework to calculate the behavior of molecules in chiral cavities. We show that in this setting the enantiomers have different energies—that is, one is more stable than the other. The field-induced energy differences are also shown to give rise to enantiospecific signatures in rotational spectra.

Strong Coupling in Chiral Cavities: Nonperturbative Framework for Enantiomer Discrimination

Rosario R. Riso;Laura Grazioli;Enrico Ronca;Tommaso Giovannini;Henrik Koch
2023

Abstract

The development of efficient techniques to distinguish mirror images of chiral molecules (enantiomers) is very important in both chemistry and physics. Enantiomers share most molecular properties except, for instance, the absorption of circularly polarized light. Enantiomer purification is therefore a challenging task that requires specialized equipment. Strong coupling between quantized fields and matter (e.g., in optical cavities) is a promising technique to modify molecular processes in a noninvasive way. The modulation of molecular properties is achieved by changing the field characteristics. In this work, we investigate whether strong coupling to circularly polarized electromagnetic fields is a viable way to discriminate chiral molecules. To this end, we develop a nonperturbative framework to calculate the behavior of molecules in chiral cavities. We show that in this setting the enantiomers have different energies—that is, one is more stable than the other. The field-induced energy differences are also shown to give rise to enantiospecific signatures in rotational spectra.
2023
Settore CHIM/02 - Chimica Fisica
Settore CHEM-02/A - Chimica fisica
File in questo prodotto:
File Dimensione Formato  
PhysRevX.13.031002.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 3.38 MB
Formato Adobe PDF
3.38 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/132682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 40
  • OpenAlex 39
social impact